资源类型

期刊论文 486

年份

2023 38

2022 45

2021 40

2020 30

2019 47

2018 32

2017 33

2016 20

2015 28

2014 22

2013 20

2012 11

2011 14

2010 24

2009 15

2008 11

2007 14

2006 8

2005 6

2004 6

展开 ︾

关键词

建模 6

人工智能 4

增材制造 4

数值模拟 3

SWAT模型 2

人机协作 2

代理模型 2

可视化 2

复杂系统 2

建模仿真 2

微结构 2

机器学习 2

深度学习 2

Agent 1

BIM 1

BP算法 1

CGCS2000维持 1

CO2 捕集 1

COVID-19 1

展开 ︾

检索范围:

排序: 展示方式:

Design and modeling of continuum robot based on virtual-center of motion mechanism

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0739-6

摘要: Continuum robot has attracted extensive attention since its emergence. It has multi-degree of freedom and high compliance, which give it significant advantages when traveling and operating in narrow spaces. The flexural virtual-center of motion (VCM) mechanism can be machined integrally, and this way eliminates the assembly between joints. Thus, it is well suited for use as a continuum robot joint. Therefore, a design method for continuum robots based on the VCM mechanism is proposed in this study. First, a novel VCM mechanism is formed using a double leaf-type isosceles-trapezoidal flexural pivot (D-LITFP), which is composed of a series of superimposed LITFPs, to enlarge its stroke. Then, the pseudo-rigid body (PRB) model of the leaf is extended to the VCM mechanism, and the stiffness and stroke of the D-LITFP are modeled. Second, the VCM mechanism is combined to form a flexural joint suitable for the continuum robot. Finally, experiments and simulations are used to validate the accuracy and validity of the PRB model by analyzing the performance (stiffness and stroke) of the VCM mechanism. Furthermore, the motion performance of the designed continuum robot is evaluated. Results show that the maximum stroke of the VCM mechanism is approximately 14.2°, the axial compressive strength is approximately 1915 N/mm, and the repeatable positioning accuracies of the continuum robot is approximately ±1.47° (bending angle) and ±2.46° (bending direction).

关键词: VCM mechanism     continuum robot     flexural joint     pseudo-rigid body model     cable-driven    

Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0678-2

摘要: Owing to their inherent great flexibility, good compliance, excellent adaptability, and safe interactivity, soft robots have shown great application potential. The advantages of light weight, high efficiency, non-polluting characteristic, and environmental adaptability provide pneumatic soft robots an important position in the field of soft robots. In this paper, a soft robot with 10 soft modules, comprising three uniformly distributed endoskeleton pneumatic artificial muscles, was developed. The robot can achieve flexible motion in 3D space. A novel kinematic modeling method for variable-curvature soft robots based on the minimum energy method was investigated, which can accurately and efficiently analyze forward and inverse kinematics. Experiments show that the robot can be controlled to move to the desired position based on the proposed model. The prototype and modeling method can provide a new perspective for soft robot design, modeling, and control.

关键词: pneumatic artificial muscles     soft robot     modeling approach     principle of virtual work     external load    

Piezoelectric inertial robot for operating in small pipelines based on stick-slip mechanism: modeling

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0697-z

摘要: Small pipes exist in industrial and biomedical fields, and require microrobots with high operational precision and large load capacity to inspect or perform functional tasks. A piezoelectric inertial pipeline robot using a “stick-slip” mechanism was proposed to address this requirement. In this study, the driving principle of the proposed robot was analyzed, and the strategy of the design scheme was presented. A dynamics model of the stick-slip system was established by combining the dynamics model of the driving foot system and the LuGre friction model, and the simulation analysis of the effect of system parameters on the operating trajectory was performed. An experimental system was established to examine the output characteristics of the proposed robot. Experimental results show that the proposed pipeline robot with inertial stick-slip mechanism has a great load capacity of carrying 4.6 times (70 g) its own mass and high positioning accuracy. The speed of the pipeline robot can reach up to 3.5 mm/s (3 mm/s) in the forward (backward) direction, with a minimum step distance of 4 μm. Its potential application for fine operation in the pipe is exhibited by a demonstration of contactless transport.

关键词: pipeline robot     piezoelectric     inertial drive     stick-slip     large load capacity     dynamics model     small pipeline    

Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking

Hamza KHAN,Jamshed IQBAL,Khelifa BAIZID,Teresa ZIELINSKA

《信息与电子工程前沿(英文)》 2015年 第16卷 第2期   页码 166-172 doi: 10.1631/FITEE.1400183

摘要: This research formulates a path-following control problem subjected to wheel slippage and skid and solves it using a logic-based control scheme for a wheeled mobile robot (WMR). The novelty of the proposed scheme lies in its methodology that considers both longitudinal and lateral slip components. Based on the derived slip model, the controller for longitudinal motion slip has been synthesized. Various control parameters have been studied to investigate their effects on the performance of the controller resulting in selection of their optimum values. The designed controller for lateral slip or skid is based on the proposed side friction model and skid check condition. Considering a car-like WMR, simulation results demonstrate the effectiveness of the proposed control scheme. The robot successfully followed the desired circular trajectory in the presence of wheel slippage and skid. This research finds its potential in various applications involving WMR navigation and control.

关键词: Robot modeling     Robot navigation     Slip and skid control     Wheeled mobile robots    

Mechanical design, modeling, and identification for a novel antagonistic variable stiffness dexterous

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0691-5

摘要: This study traces the development of dexterous hand research and proposes a novel antagonistic variable stiffness dexterous finger mechanism to improve the safety of dexterous hand in unpredictable environments, such as unstructured or man-made operational errors through comprehensive consideration of cost, accuracy, manufacturing, and application. Based on the concept of mechanical passive compliance, which is widely implemented in robots for interactions, a finger is dedicated to improving mechanical robustness. The finger mechanism not only achieves passive compliance against physical impacts, but also implements the variable stiffness actuator principle in a compact finger without adding supererogatory actuators. It achieves finger stiffness adjustability according to the biologically inspired stiffness variation principle of discarding some mobilities to adjust stiffness. The mechanical design of the finger and its stiffness adjusting methods are elaborated. The stiffness characteristics of the finger joint and the actuation unit are analyzed. Experimental results of the finger joint stiffness identification and finger impact tests under different finger stiffness presets are provided to verify the validity of the model. Fingers have been experimentally proven to be robust against physical impacts. Moreover, the experimental part verifies that fingers have good power, grasping, and manipulation performance.

关键词: multifingered hand     mechanism design     robot safety     variable stiffness actuator    

Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations

Qizhi MENG, Fugui XIE, Xin-Jun LIU

《机械工程前沿(英文)》 2018年 第13卷 第2期   页码 211-224 doi: 10.1007/s11465-018-0471-4

摘要:

This paper deals with the conceptual design, kinematic analysis and workspace identification of a novel four degrees-of-freedom (DOFs) high-speed spatial parallel robot for pick-and-place operations. The proposed spatial parallel robot consists of a base, four arms and a 1½ mobile platform. The mobile platform is a major innovation that avoids output singularity and offers the advantages of both single and double platforms. To investigate the characteristics of the robot’s DOFs, a line graph method based on Grassmann line geometry is adopted in mobility analysis. In addition, the inverse kinematics is derived, and the constraint conditions to identify the correct solution are also provided. On the basis of the proposed concept, the workspace of the robot is identified using a set of presupposed parameters by taking input and output transmission index as the performance evaluation criteria.

关键词: spatial parallel robot     pick-and-place operations     mobility analysis     kinematic modeling     workspace identification    

Review of human–robot coordination control for rehabilitation based on motor function evaluation

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0684-4

摘要: As a wearable and intelligent system, a lower limb exoskeleton rehabilitation robot can provide auxiliary rehabilitation training for patients with lower limb walking impairment/loss and address the existing problem of insufficient medical resources. One of the main elements of such a human–robot coupling system is a control system to ensure human–robot coordination. This review aims to summarise the development of human–robot coordination control and the associated research achievements and provide insight into the research challenges in promoting innovative design in such control systems. The patients’ functional disorders and clinical rehabilitation needs regarding lower limbs are analysed in detail, forming the basis for the human–robot coordination of lower limb rehabilitation robots. Then, human–robot coordination is discussed in terms of three aspects: modelling, perception and control. Based on the reviewed research, the demand for robotic rehabilitation, modelling for human–robot coupling systems with new structures and assessment methods with different etiologies based on multi-mode sensors are discussed in detail, suggesting development directions of human–robot coordination and providing a reference for relevant research.

关键词: human–robot coupling     lower limb rehabilitation     exoskeleton robot     motor assessment     dynamical model     perception    

Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0687-1

摘要: Masticatory robots are an effective in vitro performance testing device for dental material and mandibular prostheses. A cable-driven linear actuator (CDLA) capable of bidirectional motion is proposed in this study to design a masticatory robot that can achieve increasingly human-like chewing motion. The CDLA presents remarkable advantages, such as lightweight and high stiffness structure, in using cable amplification and pulley systems. This work also exploits the proposed CDLA and designs a masticatory robot called Southeast University masticatory robot (SMAR) to solve existing problems, such as bulky driving linkage and position change of the muscle’s origin. Stiffness analysis and performance experiment validate the CDLA’s efficiency, with its stiffness reaching 1379.6 N/mm (number of cable parts n = 4), which is 21.4 times the input wire stiffness. Accordingly, the CDLA’s force transmission efficiencies in two directions are 84.5% and 85.9%. Chewing experiments are carried out on the developed masticatory robot to verify whether the CDLA can help SMAR achieve a natural human-like chewing motion and sufficient chewing forces for potential applications in performance tests of dental materials or prostheses.

关键词: masticatory robot     cable-driven     linear actuator     parallel robot     stiffness analysis    

Terrain classification and adaptive locomotion for a hexapod robot Qingzhui

Yue ZHAO, Feng GAO, Qiao SUN, Yunpeng YIN

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 271-284 doi: 10.1007/s11465-020-0623-1

摘要: Legged robots have potential advantages in mobility compared with wheeled robots in outdoor environments. The knowledge of various ground properties and adaptive locomotion based on different surface materials plays an important role in improving the stability of legged robots. A terrain classification and adaptive locomotion method for a hexapod robot named Qingzhui is proposed in this paper. First, a force-based terrain classification method is suggested. Ground contact force is calculated by collecting joint torques and inertial measurement unit information. Ground substrates are classified with the feature vector extracted from the collected data using the support vector machine algorithm. Then, an adaptive locomotion on different ground properties is proposed. The dynamic alternating tripod trotting gait is developed to control the robot, and the parameters of active compliance control change with the terrain. Finally, the method is integrated on a hexapod robot and tested by real experiments. Our method is shown effective for the hexapod robot to walk on concrete, wood, grass, and foam. The strategies and experimental results can be a valuable reference for other legged robots applied in outdoor environments.

关键词: terrain classification     hexapod robot     legged robot     adaptive locomotion     gait control    

Strategy for robot motion and path planning in robot taping

Qilong YUAN,I-Ming CHEN,Teguh Santoso LEMBONO,Simon Nelson LANDÉN,Victor MALMGREN

《机械工程前沿(英文)》 2016年 第11卷 第2期   页码 195-203 doi: 10.1007/s11465-016-0390-1

摘要:

Covering objects with masking tapes is a common process for surface protection in processes like spray painting, plasma spraying, shot peening, etc. Manual taping is tedious and takes a lot of effort of the workers. The taping process is a special process which requires correct surface covering strategy and proper attachment of the masking tape for an efficient surface protection. We have introduced an automatic robot taping system consisting of a robot manipulator, a rotating platform, a 3D scanner and specially designed taping end-effectors. This paper mainly talks about the surface covering strategies for different classes of geometries. The methods and corresponding taping tools are introduced for taping of following classes of surfaces: Cylindrical/extended surfaces, freeform surfaces with no grooves, surfaces with grooves, and rotational symmetrical surfaces. A collision avoidance algorithm is introduced for the robot taping manipulation. With further improvements on segmenting surfaces of taping parts and tape cutting mechanisms, such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to assist humans in this tedious and time costly work.

关键词: robot taping     path planning     robot manipulation     3D scanning    

Design and experimental study of a passive power-source-free stiffness-self-adjustable mechanism

Yuwang LIU, Dongqi WANG, Shangkui YANG, Jinguo LIU, Guangbo HAO

《机械工程前沿(英文)》 2021年 第16卷 第1期   页码 32-45 doi: 10.1007/s11465-020-0604-4

摘要: Passive variable stiffness joints have unique advantages over active variable stiffness joints and are currently eliciting increased attention. Existing passive variable stiffness joints rely mainly on sensors and special control algorithms, resulting in a bandwidth-limited response speed of the joint. We propose a new passive power-source-free stiffness-self-adjustable mechanism that can be used as the elbow joint of a robot arm. The new mechanism does not require special stiffness regulating motors or sensors and can realize large-range self-adaptive adjustment of stiffness in a purely mechanical manner. The variable stiffness mechanism can automatically adjust joint stiffness in accordance with the magnitude of the payload, and this adjustment is a successful imitation of the stiffness adjustment characteristics of the human elbow. The response speed is high because sensors and control algorithms are not needed. The variable stiffness principle is explained, and the design of the variable stiffness mechanism is analyzed. A prototype is fabricated, and the associated hardware is set up to validate the analytical stiffness model and design experimentally.

关键词: variable stiffness mechanism     stiffness self-regulation     bionic robot     modeling    

A new efficient optimal path planner for mobile robot based on Invasive Weed Optimization algorithm

Prases K. MOHANTY,Dayal R. PARHI

《机械工程前沿(英文)》 2014年 第9卷 第4期   页码 317-330 doi: 10.1007/s11465-014-0304-z

摘要:

Planning of the shortest/optimal route is essential for efficient operation of autonomous mobile robot or vehicle. In this paper Invasive Weed Optimization (IWO), a new meta-heuristic algorithm, has been implemented for solving the path planning problem of mobile robot in partially or totally unknown environments. This meta-heuristic optimization is based on the colonizing property of weeds. First we have framed an objective function that satisfied the conditions of obstacle avoidance and target seeking behavior of robot in partially or completely unknown environments. Depending upon the value of objective function of each weed in colony, the robot avoids obstacles and proceeds towards destination. The optimal trajectory is generated with this navigational algorithm when robot reaches its destination. The effectiveness, feasibility, and robustness of the proposed algorithm has been demonstrated through series of simulation and experimental results. Finally, it has been found that the developed path planning algorithm can be effectively applied to any kinds of complex situation.

关键词: mobile robot     obstacle avoidance     Invasive Weed Optimization     navigation    

An autonomous miniature wheeled robot based on visual feedback control

CHEN Haichu

《机械工程前沿(英文)》 2007年 第2卷 第2期   页码 197-200 doi: 10.1007/s11465-007-0033-7

摘要: Using two micro-motors, a novel omni-direction miniature wheeled robot is designed on the basis of the bi-corner driving principle. The robot takes advantage of the Bluetooth technology to wirelessly transmit data at a short distance. Its position and omni-direction motion are precise. A Charge Coupled Device (CCD) camera is used for measuring and for visual navi gation. A control system is developed. The precision of the position is 0.5 mm, the resolution is about 0.05 mm, and the maximum velocity is about 52 mm/s. The visual navigation and control system allow the robot to navigate and track the target and to accomplish autonomous locomotion.

关键词: measuring     distance     autonomous locomotion     advantage     navigation    

Analytical dynamic solution of a flexible cable-suspended manipulator

Mahdi BAMDAD

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 350-359 doi: 10.1007/s11465-013-0271-9

摘要:

Cable-suspended manipulators are used in large scale applications with, heavy in weight and long in span cables. It seems impractical to maintain cable assumptions of smaller robots for large scale manipulators. The interactions among the cables, platforms and actuators can fully evaluate the coupled dynamic analysis. The structural flexibility of the cables becomes more pronounced in large manipulators. In this paper, an analytic solution is provided to solve cable vibration. Also, a closed form solution can be adopted to improve the dynamic response to flexibility. The output is provided by the optimal torque generation subject to the actuator limitations in a mechatronic sense. Finally, the performance of the proposed algorithm is examined through simulations.

关键词: parallel robot     flexible cable     suspended robot     dynamic    

Different manipulation mode analysis of a radial symmetrical hexapod robot with leg–arm integration

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 8-8 doi: 10.1007/s11465-021-0664-0

摘要: With the widespread application of legged robot in various fields, the demand for a robot with high locomotion and manipulation ability is increasing. Adding an extra arm is a useful but general method for a legged robot to obtain manipulation ability. Hence, this paper proposes a novel hexapod robot with two integrated leg–arm limbs that obtain dexterous manipulation functions besides locomotion ability without adding an extra arm. The manipulation modes can be divided into coordinated manipulation condition and single-limb manipulation condition. The former condition mainly includes fixed coordinated clamping case and fixed coordinated shearing case. For the fixed coordinated clamping case, the degrees of freedom (DOFs) analysis of equivalent parallel mechanism by using screw theory and the constraint equation of two integrated limbs are established. For the fixed coordinated shearing case, the coordinated working space is determined, and an ideal coordinated manipulation ball is presented to guide the coordinated shearing task. In addition, the constraint analysis of two adjacent integrated limbs is performed. Then, mobile manipulation with one integrated leg–arm limb while using pentapod gait is discussed as the single-limb manipulation condition, including gait switching analysis between hexapod gait and pentapod gait, different pentapod gaits analysis, and a complex six-DOF manipulation while walking. Corresponding experiments are implemented, including clamping tasks with two integrated limbs, coordinated shearing task by using two integrated limbs, and mobile manipulation with pentapod gait. This robot provides a new approach to building a multifunctional locomotion platform.

关键词: leg–arm integration     hexapod robot     fixed coordinated manipulation     mobile manipulation    

标题 作者 时间 类型 操作

Design and modeling of continuum robot based on virtual-center of motion mechanism

期刊论文

Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles

期刊论文

Piezoelectric inertial robot for operating in small pipelines based on stick-slip mechanism: modeling

期刊论文

Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking

Hamza KHAN,Jamshed IQBAL,Khelifa BAIZID,Teresa ZIELINSKA

期刊论文

Mechanical design, modeling, and identification for a novel antagonistic variable stiffness dexterous

期刊论文

Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations

Qizhi MENG, Fugui XIE, Xin-Jun LIU

期刊论文

Review of human–robot coordination control for rehabilitation based on motor function evaluation

期刊论文

Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion

期刊论文

Terrain classification and adaptive locomotion for a hexapod robot Qingzhui

Yue ZHAO, Feng GAO, Qiao SUN, Yunpeng YIN

期刊论文

Strategy for robot motion and path planning in robot taping

Qilong YUAN,I-Ming CHEN,Teguh Santoso LEMBONO,Simon Nelson LANDÉN,Victor MALMGREN

期刊论文

Design and experimental study of a passive power-source-free stiffness-self-adjustable mechanism

Yuwang LIU, Dongqi WANG, Shangkui YANG, Jinguo LIU, Guangbo HAO

期刊论文

A new efficient optimal path planner for mobile robot based on Invasive Weed Optimization algorithm

Prases K. MOHANTY,Dayal R. PARHI

期刊论文

An autonomous miniature wheeled robot based on visual feedback control

CHEN Haichu

期刊论文

Analytical dynamic solution of a flexible cable-suspended manipulator

Mahdi BAMDAD

期刊论文

Different manipulation mode analysis of a radial symmetrical hexapod robot with leg–arm integration

期刊论文